Устройство для геоэлектроразведки

 

Назначение для поисков залежей углеводородов как на шельфе Мирового океана, так и на суше. Решаемая задача: повышение глубинности, детальности и разрешающей способности способа геоэлектроразведки, а также расширение области его применения за счет возможности использования в условиях непроводящих экранов, при одновременном повышении мобильности и производительности геоэлектроразведки. Сущность полезной модели: В устройстве для геоэлектроразведки, содержащем симметричную установку из двух питающих линий, в которых токи направлены в противоположных направлениях, и средства для измерения характеристик электромагнитного поля, включающие по меньшей мере, один подключенный к измерителю приемный датчик, предлагается питающие линии выполнить равной длины и расположить последовательно одна за другой на одной прямой, при этом каждая питающая линия подключена к соответствующему генератору импульсного тока так, чтобы в питающих линиях протекали одинаковые по величине и противоположные по знаку импульсные токи, а входы управления генераторов тока предлагается соединить с соответствующими блоками управления, выполненными с возможностью синхронизации импульсов тока в питающих линиях, осуществляемой, преимущественно, от приемника GPS. Питающие линии могут быть заземлены с помощью трех электродов, два из которых расположены по краям установки, а третий расположен в центре симметрии установки, является общим для обеих питающих линий и подключен к объединенным выводам одной полярности генераторов тока, а крайние питающие электроды подключены каждый ко второму из выводов другой полярности соответствующего генератора тока через соответствующую питающую линию. Питающие линии могут быть заземлены каждая с помощью соответствующей пары электродов, при этом первые электроды в парах расположены по краям установки и подключены к выводам одной полярности соответствующих генераторов тока через соответствующие питающие линии, а вторые электроды расположены вблизи центра симметрии установки на одинаковом расстоянии от него и подключены к выводам другой полярности генераторов тока. В качестве приемного датчика может быть использована приемная линия, расположенная на одной прямой с питающими линиями.

Полезная модель относится к геоэлектроразведке и может быть использована, в частности, для поисков залежей углеводородов как на шельфе Мирового океана, так и на суше.

Известен способ морской электроразведки согласно патенту SU 1819354, при котором возбуждают переменное электрическое поле с помощью горизонтального электрического диполя и на каждой точке зондирования величину первого разноса выбирают равной двум толщам слоя морской воды, измеренным с помощью эхолота, а величину последнего разноса выбирают по выходу проводимости на асимптотическое значение.

Известный способ служит только для изучения осадочного чехла небольшой толщины (до 50 м) на небольших глубинах (до 30 м) и, в принципе, не способен обнаруживать расположенные на большой глубине протяженные локальные объекты, какими могут быть объекты типа «залежь», поскольку с увеличением разноса зондирования все возрастающую роль в сигнале-отклике начинает играть продольная проводимость морской воды. Кроме того, необходимость изменения разносов установки приводит к снижению производительности разведочных работ и увеличению их стоимости. Приемопередающая установка в виде горизонтальных линий, реализующая вышеописанный способ, позволяет регистрировать, в основном, отклик от вторичных сторонних токов, распространяющихся в горизонтальных плоскостях, чем обусловлено нежелательное влияние продольной проводимости морской воды на результаты измерений.

Известен способ индукционной вызванной поляризации ЗСБ-ИВП, используемый в практике морской электроразведки (Физика Земли, 1994, 6, с. 56-57), при котором электрическое поле в проводящей среде в процессе становления после включения или выключения источника тока изменяется не резко, а плавно. Чем больше глубина залегания слоя, тем позже наступают изменения в сигнале становления. Возникновение дополнительного источника вызванной поляризации приводит к изменениям, которые вначале растут по абсолютной величине, а затем, по мере затухания дополнительного источника, убывают. Так возникает индукционная вызванная поляризация. Следовательно, чем больше глубина залегания поляризующего слоя, тем па более поздних временах будет проявляться этот слой в поле индукционной вызванной поляризации. Однако на поисковой стадии геофизических исследований метод может быть использован только как сугубо дополнительный к сейсморазведке, поскольку по результатам измерений ЗСБ-ИВП нельзя однозначно сказать о наличии локальных неоднородностей, так как необходимо провести измерения по профилю, обработать большой объем данных на ЭВМ и построить геоэлектрический разрез, по которому можно сделать заключение. Кроме того, необходимость изменения разносов установки приводит к снижению производительности работ и увеличению их стоимости. Увеличение амплитуды тока не дает существенного выигрыша, поскольку пропорционально увеличению сигнала ВП возрастает индукционный процесс.

Для реализации вышеописанного способа ЗСБ-ИВП используется традиционная приемопередающая установка, включающая питающую линию АВ и приемную линию MN, которая позволяет регистрировать, в основном, отклик от вторичных сторонних токов, распространяющихся в горизонтальных плоскостях. Дело в том, что питающая линия является смешаным источником (возбуждающим ТЕ- и ТМ-поляризации электромагнитного поля), но таким, поле которого быстро теряет ТМ-поляризацию. Мощное ТЕ-поле, связанное с суммарной продольной проводимостью разреза, в которой основную долю составляет проводимость слоя морской воды, является сильнейшей помехой при изучении слабых латеральных неоднородностей (типа нефтяной залежи), а также при определении таких характерных объектов, как тонкий горизонт повышенного сопротивления.

Весьма желательно убрать ТЕ-поле, связанное с индуктивным возбуждением от питающей линии и оставить только ТМ-поле, возбуждаемое посредством заземлений. В таком случае электромагнитное поле станет более чувствительным и к аномальной проводимости, и к более тонкому влиянию других геоэлектрических параметров (например, появляющихся в ореолах над залежью).

Известен наиболее близкий к предлагаемому способ геоэлектроразведки методом сопротивлений согласно авторскому свидетельству СССР. 203093 с использованием дифференциальной симметричной установки с двумя питающими линиями, при котором с целью повышения детальности и глубинности разведки, измеряют разность потенциалов при заданных значениях противоположно направленных токов питающих линий, разность потенциалов и силу тока при выключенной питающей линии с током одного направления и разность потенциалов и силу тока при выключенной питающей линии с током другого направления, а по измеренным величинам определяют кажущееся удельное сопротивление и строят дифференциальные кривые зондирований.

Однако такой способ обладает существенными недостатками. Способ основан на использовании постоянного тока, что ограничивает его глубинность, детальность и разрешающую способность, а также применение в условиях непроводящих экранов. Кроме того сложность осуществления способа снижает его производительность, ограничивает его мобильность и возможности применения как на суше, так, в особенности, на море при движении судна.

Устройство, реализующее способ согласно авторскому свидетельству а.с. 203093, содержит две симметрично расположенных питающих линии, в которых токи направлены в противоположных направлениях, и средства для измерения характеристик электромагнитного поля, включающие по меньшей мере, одну подключенную к измерителю приемную линию. Устройство обладает всеми вышеперечисленными недостатками, присущими реализуемому способу.

Предлагаемая полезная модель направлена на решение задачи повышения глубинности, детальности и разрешающей способности способа геоэлектроразведки, а также расширения области его применения за счет возможности использования в условиях непроводящих экранов, при одновременном повышении мобильности и производительности геоэлектроразведки.

Сущность полезной модели заключается в том, что в устройстве для геоэлектроразведки, содержащем симметричную установку из двух питающих линий, в которых токи направлены в противоположных направлениях, и средства для измерения характеристик электромагнитного поля, включающие по меньшей мере, один подключенный к измерителю приемный датчик, предлагается питающие линии выполнить равной длины и расположить последовательно одна за другой на одной прямой, при этом каждая питающая линия подключена к соответствующему генератору импульсного тока так, чтобы в питающих линиях протекали одинаковые по величине и противоположные по знаку импульсные токи, а входы управления генераторов тока предлагается соединить с соответствующими блоками управления, выполненными с возможностью синхронизации импульсов тока в питающих линиях, осуществляемой, преимущественно, от приемника GPS.

Питающие линии могут быть заземлены с помощью трех электродов, два из которых расположены по краям установки, а третий расположен в центре симметрии установки, является общим для обеих питающих линий и подключен к объединенным выводам одной полярности генераторов тока, а крайние питающие электроды подключены каждый ко второму из выводов другой полярности соответствующего генератора тока через соответствующую питающую линию.

Питающие линии могут быть заземлены каждая с помощью соответствующей пары электродов, при этом первые электроды в парах расположены по краям установки и подключены к выводам одной полярности соответствующих генераторов тока через соответствующие питающие линии, а вторые электроды расположены вблизи центра симметрии установки на одинаковом расстоянии от него и подключены к выводам другой полярности генераторов тока.

В качестве приемного датчика может быть использована приемная линия, расположенная на одной прямой с питающими линиями.

В предлагаемой полезной модели возбуждение электромагнитного поля двумя питающими линиями с равными токами, протекающими в противоположных направлениях, позволяет скомпенсировать индукционные процессы (т.е. ТЕ-составляющая поля в значительной мере компенсируется), а конфигурация приемо-передающей установки остается столь же мобильной, как и обычная питающая линия АВ. Сущность полезнойм иодели понятна, например, из сравнения предлагаеой установки с двумя питающими линиями и тремя заземленными электродами с обычной установкой в виде одной питающей линии, заземленной по концам с помощью двух электродов. При этом токи в питающих линиях предлагаемой трехэлектродной установки протекают в противоположных направлениях - в данном случае от крайних заземлений к центральному. Такой источник можно назвать дифференциальной питающей линией, поскольку в данном случае устраняется (не полностью, но в значительной мере) способность к индуктивному возбуждению, но в то же время сохраняется гальваническое возбуждение.

Предлагаемое устройство может использоваться как на суше, так и на море. В случае использования устройства, например, в морской электроразведке, при отсутствии залежи углеводородов фиксируется мало изменяющийся по амплитуде сигнал ВП от поляризующей среды под морским дном. При буксировании двух питающих линий с тремя электродами АВА1 в пределах заданной площади можно наблюдать изменения сигнала ВП, а после обработки судить о наличии или отсутствии залежи углеводородов. Таким образом, можно разбраковывать зафиксированные сейсморазведкой аномалии.

В предлагаемом устройстве геоэлектроразведки за счет наличия двух генераторов тока, подключенных каждый к соответствующей питающей линии, стало возможным обеспечить протекание токов в противоположных направлениях. Кроме того, стало возможно значительно увеличить амплитуду выходного тока генераторов, что позволяет получить больший сигнал ВП от залежи.

На фиг.1 приведена схема направления тока в обычной питающей линии ЛВ и в предлагаемом варианте дифференциальной питающей линии, содержащей две питающих линии, заземленных с помощью трех питающих электродов АВА1. На фиг.2 приведена блок-схема предлагаемого устройства в варианте с тремя питающими электродами, На фиг.3 приведен разрез, включающий высокоомный тонкий слой, на фиг.4 приведены кривые становления ЭДС в приемной линии MN, на фиг.5 приведены кривые аномальных сигналов в приемной линии MN, на фиг.6 приведены кривые относительных аномальных сигналов в приемной линии MN.

Устройство, приведенное на фиг.2, содержит приемник 1 GPS, выход которого соединен со входами синхронизации блоков 2 управления, управляющие выходы которых соединены каждый в отдельности со входами управления генераторов 3 импульсного тока. Первые выводы генераторов 3 - выводы одной полярности, в данном случае выводы положительной полярности, объединены и соединены через проводную соединительную электрическую линию 4 с центральным питающим электродом В, а выводы отрицательной полярности генераторов 3 соединены один через проводную линию 5 и последовательно с ней включенную питающую линию 6 с питающим электродом А, а другой соединен с питающим электродом А1 через проводную соединительную электрическую линию 7 и последовательно с ней включенную питающую линию 8. При работе на суше выходной ток генераторов 3 должен быть стабилизирован. Вход синхронизации измерителя 9 электрической составляющей соединен с выходом приемника 1 GPS. Измерительные входы измерителя 9 соединены с приемным датчиком, представляющим собой приемную линию 10, заземленную с помощью приемных электродов MN. Входы питания генераторов 3 тока подключены к источнику электропитания (на фигурах не показано).

В морском варианте выполнения предлагаемого устройства соединительные электрические линии 4, 5, 7 и питающие линии 6, 8 с электродами АВА1 крепятся к тросу поплавками из изолированного материала (на схеме условно не показан). Сечение проводов выбирается в зависимости от величины тока, протекающего в проводных линиях. Расстояние между электродами АВ, равное расстоянию между электродами АВА1, выбирают в зависимости от исследуемой глубины под морским дном и глубины моря до дна.

Устройство работает следующим образом. Сигналы от приемника 1 GPS синхронизируют работу генераторов 3 импульсного тока через блоки 2 управления. В блоках 2 управления формируется временная диаграмма прямоугольных импульсов тока с паузой между ними. Соединительные электрические линии 4, 5, 7, питающие линии 6, 8 и электроды АВА выгружаются с помощью лебедки с морского судна. Первым к проводной линии 7 присоединяется питающий электрод А1 и выгружается в море. Через расстояние а) В к проводной линии 4 присоединяется питающий электрод В и выгружается в море. А через расстояние АВ к проводной линии 5 присоединяется питающий электрод А и также выгружается в море. Приемная линия MN может буксироваться за питающими линиями АВА1, соединенная с ней отрезком непроводящего троса, или может буксироваться отдельным судном параллельно питающими линиями 6,8 с питающими электродами АВА1. Когда питающие линии 6, 8 и электроды АВА 1 выгружены в море, включаются генераторы 3 тока и в питающие линии 6, 8 подаются синхронно разнонаправленные относительно питающего электрода В токи. Индукционные процессы возбуждаются в среде (в морской воде и под морским дном) в противофазе и компенсируют друг друга. При отсутствии нефтяной залежи измеритель 9 фиксирует незначительный сигнал ВП от поляризующихся пород, поступающий от приемного датчика, представляющего собой приемную линию 10. При наличии залежи нефти, поляризуемость которой довольно велика, сигнал ВП от линии 10 начинает увеличиваться и уверенно фиксируется измерителем 9.

Продемонстрируем преимущество предлагаемого источника посредством математического моделирования на примере известной проблемы определения тонкого высокоомного горизонта. Проблему эту часто связывают с проблемой поиска и разведки нефтяной залежи. На фиг.3 представлена подобная 3-слойная модель, параметры которой указаны. Обычно для традиционной установки используют куда более внушительные параметры горизонта повышенного сопротивления, слабо обоснованные, но совершенно необходимые для получения хотя бы слабоизмеримого сигнала. Будем возбуждать эту среду обычным устройством с питающей длинней АВ (2000 м, ток 50 А) и предлаеаемым устройством с дифференциальной питающей линией (1000+1000 м, ток по 50 А в каждом отрезке, включается навстречу). Наблюдаем электрический сигнал 100-метровой приемной линией на удалении 2000 м от центра источника.

Мы воспользовались весьма выверенной универсальной программой «Выбор-ЗС» (B.C.Могилатов, А.В.Злобинский, 2008) и произвели соответствующие расчеты процессов становления. На фиг.5 представлены кривые ЭДС для обычной и дифференциальной установок, для модели, описанной на фиг. 4 (шифр-3/1), а также для вмещающего однородного полупространства.

Заметно на фиг.5 общее уменьшение сигнала от дифференциальной питающей линии и более быстрый спад. Это совершенно понятно, т.к. доля поля магнитного типа (ТЕ) резко уменьшилась, а ТМ-поле спадает значительно быстрее. Интересно посмотреть абсолютные значения аномального (влияние высокоомного горизонта) си (нала. Мы видим (фиг.4), что абсолютный аномальный сигнал даже возрос в первой стадии становления. Наконец, на рис.6 представлены графики относительного (в %) аномального эффекта. Аномальный эффект в случае дифференциальной установки возрос в 4-5 раза, и это совершенно понятно - только ТМ-поле взаимодействует с тонким высокоомным горизонтом. Но как раз долю ТМ-поля мы резко увеличили в составе общего поля посредством дифференциальной конфигурации питающего тока.

Таким образом, устройство для геоэлектроразведки с дифференциальной питающей линией действительно существенно эффективнее устройства с традиционной токовой линии. При этом мобильность предлагаемого устройства не уступает обычно используемому устройству с одной питающей линией.

1. Устройство для геоэлектроразведки, содержащее симметричную установку из двух питающих линий, в которых токи направлены в противоположных направлениях, и средства для измерения характеристик электромагнитного поля, включающие, по меньшей мере, один подключенный к измерителю приемный датчик, отличающееся тем, что питающие линии выполнены равной длины и расположены последовательно одна за другой на одной прямой, при этом каждая питающая линия подключена к соответствующему генератору импульсного тока так, чтобы в питающих линиях протекали одинаковые по величине и противоположные по знаку импульсные токи, а входы управления генераторов тока соединены с соответствующими блоками управления, выполненными с возможностью синхронизации импульсов тока в питающих линиях, осуществляемой преимущественно от приемника GPS.

2. Устройство для геоэлектроразведки по п.1, отличающееся тем, что питающие линии заземлены с помощью трех электродов, два из которых расположены по краям установки, а третий расположен в центре симметрии установки, является общим для обеих питающих линий и подключен к объединенным выводам одной полярности генераторов тока, а крайние питающие электроды подключены каждый ко второму из выводов другой полярности соответствующего генератора тока через соответствующую питающую линию.

3. Устройство для геоэлектроразведки по п.1, отличающееся тем, что питающие линии заземлены, каждая с помощью соответствующей пары электродов, при этом первые электроды в парах расположены по краям установки и подключены к выводам одной полярности соответствующих генераторов тока через соответствующие питающие линии, а вторые электроды расположены вблизи центра симметрии установки на одинаковом расстоянии от него и подключены к выводам другой полярности генераторов тока, в качестве приемного датчика может быть использована приемная линия, расположенная на одной прямой с питающими линиями.

4. Устройство для геоэлектроразведки по п.1, отличающееся тем, что в качестве приемного датчика используют приемную линию, расположенную на одной прямой с питающими линиями.



 

Наверх