Тонкопленочный фотоэлектрический элемент


H01L31 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

 

Полезная модель относится к полупроводниковым фотоэлектрическим элементам, чувствительным к электромагнитному излучению, предназначенным для преобразования энергии такого излучения в электрическую энергию и может быть использовано в производстве различного рода преобразователей, например, солнечных батарей. Тонкопленочный фотоэлектрический элемент, включающий биаксиально-текстурированную подложку, буферный слой, эпитаксиально выращенный на подложке и полупроводниковый слой, эпитаксиально выращенный на буферном слое, отличающийся тем, что буферный слой включает, по меньшей мере, два диэлектрических слоя, один из которых выполнен из простых или сложных оксидов металлов, относящихся к 3-6 периодам и IIа, IIIа, IIIб, IVб группам периодической системы химических элементов, а второй выполнен из фторидов щелочных металлов 1-3 периодов или их твердых растворов, или из фторидов или оксифторидов щелочноземельных металлов или их твердых растворов. Техническим результатом является улучшение электрофизических характеристик полупроводникового слоя, в частности, повышение подвижности носителей заряда, что способствует повышению эффективности фотопреобразования.

Полезная модель относится к полупроводниковым фотоэлектрическим элементам, чувствительным к электромагнитному излучению, предназначенным для преобразования энергии электромагнитного излучения в электрическую энергию и может быть использована в производстве различного рода преобразователей, например, солнечных батарей.

В патентной заявке JP 2000357660 (A) (D1) раскрывается многослойный фотоэлектрический материал, включающий металлическую подложку, полученную прокаткой и последующим отжигом и характеризующуюся биаксиальной текстурой; размещенный на подложке буферный слой и расположенный на данном слое слой нелегированного кремния. Данный многослойный материал имеет широкий диапазон применений, но преимущественным, является изготовление или его использование в солнечных батареях.

Недостатком данного материала является использование в качестве материала буферного слоя материалов, у которых размеры кристаллической решетки существенно отличаются от размеров кристаллической решетки кремния. Большая разница в размерах кристаллических решеток кремния и материалов буферного слоя препятствует эпитаксиальному росту кремния на таких буферных слоях, что повышает степень мозаичности поликристаллической пленки кремния. Это приводит к высокой дефектности границ между кристаллитами кремния в виду больших углов их разориентации, что приводит к уменьшению подвижности носителей заряда, повышению электрического сопротивления полупроводникового слоя и, в конечном итоге, к снижению эффективности работы солнечного элемента.

Задачей полезной модели является устранение присущих известному техническому решению недостатков.

Поставленная задача решается тонкопленочным фотоэлектрическим элементом, включающим биаксиально текстурированную подложку, буферный слой, эпитаксиально выращенный на подложке и полупроводниковый слой, эпитаксиально выращенный на буферном слое, в соответствии с которым буферный слой включает, по меньшей мере, два диэлектрических слоя, один из которых выполнен из простых или сложных оксидов металлов, относящихся к 3-6 периодам и IIа, IIIа, IIIб, IVб группам периодической системы химических элементов, а второй выполнен из фторидов щелочных металлов 1-3 периодов или их твердых растворов, или из фторидов или оксифторидов щелочноземельных металлов или их твердых растворов.

В частных воплощениях полезной модели поставленная задача решается также тем, что толщина буферного слоя составляет от 0,01 мкм до 3 мкм.

Сущность полезной модели состоит в следующем.

Эффективность работы фотоэлемента зависит от кристаллического совершенства полупроводникового слоя. В поликристаллическом изотропном полупроводнике границы между кристаллитами имеют большие углы разориентации, что приводит к ухудшению его электрофизических свойств, в частности, к повышению электрического сопротивления, уменьшению подвижности основных носителей тока и сокращению времени их рекомбинации. Устранить эти недостатки возможно за счет придания кристаллитам полупроводника преимущественной ориентации. С повышением степени текстуры углы разориентации кристаллитов уменьшаются и, таким образом, уменьшается влияние границы разделов кристаллитов. Текстура в тонких пленках на подложке формируется в том случае, когда сама подложка обладает текстурой и при этом материалы пленки и подложки имеют одинаковые кристаллические структуры и близкие размеры кристаллических решеток.

В качестве биаксиально текстурированной подложки используют ленты на основе сплавов никеля или меди с кубической кристаллической решеткой.

Использование биаксиально текстурированной ленты на основе сплавов с кубической структурой делает возможным их использование в качестве подложек для формирования текстурированных слоев полупроводников с кубической или тетрагональной структурой, таких как Si, Ge, Si1-xGex, InP, GaP, GaAs, CdTe. Однако размеры кристаллических решеток никелевых и медных сплавов и указанных полупроводников сильно отличаются, что препятствует формированию высокой степени текстуры пленок указанных полупроводников на этих подложках.

В полезной модели на биаксиально текстурированных подложках, выполненных, например, из сплавов на основе никеля или меди, формируется биаксиально текстурированный буферный слой из материалов, имеющих кубическую или тетрагональную кристаллическую структуру и размеры кристаллической решетки промежуточные между размерами подложки и полупроводника. При этом буферный слой состоит не менее чем из двух диэлектрических слоев, один из которых является оксидным, а другой - фторидным. Оксидный слой выполнен из простых или сложных оксидов металлов, относящихся к 3-6 периодам и IIа, IIIа, IIIб, IVб группам периодической системы химических элементов, а второй выполнен из фторидов щелочных металлов 1-3 периодов или их твердых растворов, или из фторидов или оксифторидов щелочноземельных металлов или их твердых растворов. Эти соединения обладают кубической или тетрагональной структурой и имеют периоды кристаллической решетки (a - для кубической структуры, и a, b - для тетрагональной структуры) - промежуточные между размерами подложки и полупроводника. Эти материалы не проявляют заметного химического взаимодействия с материалом полупроводникового слоя и с подложкой в процессе формирования фотоэлектрического элемента.

Полупроводниковый материал формируется на буферном биаксиально текстурированном слое, с которым он имеет меньшее рассогласование периодов кристаллической решетки, чем с металлической подложкой, что способствует формированию более высокой степени текстуры в полупроводниковом слое. Таким образом, в полезной модели текстура от подложки через диэлектрические слои последовательно «передается» полупроводниковому слою. Дополнительное преимущество полезной модели состоит в том, что буферный слой препятствует взаимодействию полупроводникового слоя и легирующих его материалов с компонентами металлической подложки в результате блокирования их взаимной диффузии, что предотвращает неконтролируемое изменение состава полупроводникового слоя, приводящее к снижению эффективности работы фотоэлектрического элемента. Применение буферного слоя, состоящего не менее чем из одного оксидного и одного фторидного слоя, обеспечивает наиболее эффективное блокирование взаимной диффузии компонентов подложки и полупроводникового слоя. Материал диэлектрического слоя, его толщина и последовательность диэлектрических слоев выбирают в соответствии с составом подложки и составом полупроводникового слоя с тем, чтобы предотвратить или максимально снизить их взаимодействие во время формирования этих слоев. Толщина буферного слоя зависит от температуры и времени формирования всего фотоэлектрического элемента: чем выше температура и больше время выдержки при этой температуре, тем толще должен быть буферный слой. Толщина буферного слоя в 3 мкм является достаточной для блокирования взаимодействия между полупроводниковым слоем и металлической подложкой при всех режимах изготовления фотоэлемента методами химического или физического осаждения слоев. Формирование более толстых слоев нецелесообразно, т.к. требует излишних затрат времени и материала буферного слоя. Минимальная толщина буферного слоя должна составлять не менее 0,01 мкм, т.к. более тонкие слои не обеспечивают надежное блокирование взаимной диффузии компонентов подложки и полупроводникового слоя.

В качестве материала полупроводникового слоя могут использоваться Si, Ge, Si1-xGex, InP, GaP, GaAs, CdTe, имеющие кубическую кристаллическую структуру.

Полезная модель реализуется следующим образом.

В качестве подложки использовали металлическую ленту из сплава: Ni (90% ат.) - Cr (8% ат.) -W (2% ат.), имеющего гранецентрированную кубическую структуру с биаксиальной текстурой типа:<001>(001), сформированную путем холодной прокатки сплава в ленту толщиной 80 мкм с последующим отжигом в инертной атмосфере при 800°С в течение 15 мин.

Диэлектрические слои наносили методом химического осаждения из газовой фазы из металлоорганических прекурсоров. После осаждения каждого слоя проводили его рекристаллизационный отжиг. Суммарная толщина буферного слоя составляла 0,01-3 мкм.

Слой аморфного p-Si толщиной около 0,4 мкм осаждали из паров силана с добавлением борана. После осаждения кремния проводился его кристаллизационный отжиг.

Холловскую подвижность определяли при комнатной температуре по методу Вандер-Пау. Влияние ориентирующего действия подложки на холловскую подвижность носителей заряда в кремниевом слое приведены в таблице 1.

Как следует из приведенных в таблице данных, применение буферного слоя, состоящего из оксидного и фторидного (оксифторидного) диэлектрических слоев, приводит к наиболее существенному повышению подвижности дырок в кремнии по сравнению с кремнием, сформированным непосредственно на металлической подложке, или на буферных слоях, состоящих из однотипных диэлектрических слоев, например из двух оксидных, или двух фторидных, что обеспечивает улучшенные эксплуатационные характеристики тонкопленочных фотоэлектрических элементов, в частности более эффективное фотопреобразование.

Таблица 1.
Состав буферных слоев на металлических подложках Ni0,9 Cr0,08 W0,02 и холловская подвижность µH дырок в слое кремния, сформированном на различных буферных слоях.
Материал буферного слоя µH, (cm2V·s)
1-й слой (толщина, мкм) 2-й слой (толщина, мкм) 3-й слой (толщина, мкм)
1- -- 151
2MgO(0,08) -- 31
3ZrO2(0,10)27
4 LiF(0,50)- -29
5 CaF2(0,50) -- 27
6SrF2(0,50)- -28
7 MgO(0,08)-Al2O3(0,50) -33
8 SrTiO3(1,00)-Al2O3(0,50) -32
9 ZrO2(0,10) V2О3(0,20) -31
10 LiF(0,50)CaF 2(0,50)-33
11MgO(0,08) KF- 40
12MgO(0,08) CaF2(0,50) -40
13 MgO(0,08)SrF 2(0,50)-43
14SrF2 (0,50)MgO(0,08)- 40
15CaF2(0,50)-Al2О3(0,50) -41
16 MgO(0,08)CaF 2(0,50)-Al2O3(0,50) 50
17MgO(0,08) SrF2(0,50)-Al2O3(0,50) 50
18MgO(0,08) SrF2(0,50) LiF51
19 LiF(0,50)-Al2О3(0,50) CaF2(0,50) 52
20MgO(0,08) СеО2(0,20) CaF1,8O0,1(0,50) 51
21LiF(0,50) SrF2(0,50)-Al2О3(0,50) 50
22Na0,5K 0,5F(0,50)V 2О3(0,20) KF(1,00)49
1Для сравнения слой кремния сформирован на металлической подложке без буферного слоя.

1. Тонкопленочный фотоэлектрический элемент, включающий биаксиально-текстурированную подложку, буферный слой, эпитаксиально выращенный на подложке, и полупроводниковый слой, эпитаксиально выращенный на буферном слое, отличающийся тем, что буферный слой включает, по меньшей мере, два диэлектрических слоя, один из которых выполнен из простых или сложных оксидов металлов, относящихся к 3-6 периодам и IIа, IIIа, IIIб, IVб группам Периодической системы химических элементов, а второй выполнен из фторидов щелочных металлов 1-3 периодов или их твердых растворов, или из фторидов или оксифторидов щелочноземельных металлов или их твердых растворов.

2. Элемент по п.1, отличающийся тем, что толщина буферного слоя составляет от 0,01 до 3 мкм.



 

Наверх