Оптическая система дальномера

 

Заявляемое техническое решение относится к области оптических измерений и может быть использовано в устройствах для определения расстояний до удаленного объекта и для мониторинга атмосферы, например, в составе лидара. Задачей заявляемого технического решения является расширение функциональных возможностей. В оптической системе дальномера, содержащей источник излучения, систему формирования излучения и приемное устройство, состоящее из зеркала, выполненного в виде отрицательной менисковой линзы, на второй поверхности которой кольцеобразно нанесено зеркальное покрытие, из разделяющего блока и двух приемников излучения, расположенных по разные стороны от разделяющего блока, поставленная задача решается за счет того, что источник излучения выполнен в виде системы двух лазеров, работающих на разных длинах волн (1 и 2), и блока сведения световых каналов, указанных лазеров; система формирования излучения, выполненная в виде афокальной телескопической системы, снабжена дополнительной линзой, установленной в световом канале одного из лазеров; приемное устройство снабжено дополнительным зеркалом, которое установлено перед первой поверхностью отрицательной менисковой линзы; разделяющий блок, выполненный в виде зеркала с диафрагмой, и приемники излучения установлены на оптической оси за второй поверхностью отрицательной менисковой линзы. Заявляемое устройство существенно расширяет функциональные возможности. Оптическая схема предлагаемого устройства позволяет работать в следующих режимах: каждый канал может работать как дальномер на своей длине волны или как оптическое устройство в составе лидара при мониторинге атмосферы, либо - например, один канал работает как дальномер, а второй - создает подсветку объекта исследования.

Заявляемое техническое решение относится к области оптических измерений и может быть использовано в устройствах для определения расстояния до удаленного объекта.

Одним из основных узлов заявляемого технического решения является приемное устройство, состоящее из зеркала, выполненного в виде отрицательной менисковой линзы, на второй выпуклой поверхности которого кольцеобразно нанесено зеркальное покрытие.

Известно устройство по патенту России №2091834, G 02 B 17/08, содержащее кольцевое зеркало Манжена, выполненное в виде мениска, с зеркальным покрытием, нанесенным на его второй выпуклой поверхности. Указанное устройство может быть использовано в составе приемных устройств комплексных многоканальных оптических систем. Однако основное свойство известной системы заключается в устранении хроматизма положения и формировании фокального пятна для излучения с разными длинами волн в одной и той же точке на оптической оси. Это обстоятельство является причиной препятствующей достижению технического результата, получаемого в заявляемом устройстве, а именно: независимость работы двух каналов на разных длинах волн.

Кроме того, известное устройство имеет достаточно сложную конструкцию: содержит большое количество оптических элементов (в том числе склеенных), к которым предъявляются высокие технологические требования при изготовлении и эксплуатации. Это обстоятельство не позволяет использовать данное устройство в полевых условиях при

различных температурах и возможных значительных перепадах температур, например, при мониторинге атмосферы.

Наиболее близким аналогом к заявляемому в качестве полезной модели техническому решению является оптическая система дальномера по патенту Великобритании №1280415, G 01 C 3/32, содержащий источник излучения в виде лампы накаливания, являющейся источником сплошного спектра, систему формирования излучения, выполненную в виде параболического рефлектора, и приемное устройство, в состав которого входит зеркало, выполненное в виде отрицательной менисковой линзы, на второй поверхности которой кольцеобразно нанесено зеркальное покрытие, разделяющий блок и два приемника излучения, расположенные по разные стороны от разделяющего блока.

Причиной, препятствующей достижению технического результата, который обеспечивается предлагаемым устройством, является свойство известной оптической системы: устранение хроматизма положения и формирование фокального пятна для излучения с разными длинами волн в одной и той же точке на оптической оси. Кроме того, в известном решении источник излучения, система формирования излучения и приемное устройство расположены концентрически. А это ведет к достаточно большому экранированию и большой потере излучения при измерении расстояний до удаленных объектов и не позволяет применять данное устройство для измерения больших расстояний.

Технический результат предлагаемого устройства выражается в том, что оно обеспечивает независимость работы по двум каналам на разных длинах волн поочередно либо одновременно.

Задачей заявляемого технического решения является расширение функциональных возможностей.

Поставленная задача решается за счет того, что в оптической системе дальномера, содержащей источник излучения, систему формирования излучения и приемное устройство, состоящее из зеркала, выполненного в

виде отрицательной менисковой линзы, на второй поверхности которой кольцеобразно нанесено зеркальное покрытие, разделяющего блока и двух приемников излучения, расположенных по разные стороны от разделяющего блока, согласно полезной модели источник излучения выполнен в виде системы двух лазеров, работающих на разных длинах волн (1 и 2), и блока сведения световых каналов, указанных лазеров; система формирования излучения, выполненная в виде афокальной телескопической системы, снабжена дополнительной линзой, установленной в световом канале одного из лазеров, приемное устройство снабжено дополнительным зеркалом, которое установлено перед первой поверхностью отрицательной менисковой линзы, а разделяющий блок, выполненный в виде зеркала с диафрагмой, и приемники излучения установлены на оптической оси за второй поверхностью отрицательной менисковой линзы.

При работе устройства пучки излучения двух лазеров, работающих на разных длинах волн, сводятся в один пучок. При этом за счет введения в световой канал одного из лазеров дополнительной линзы устраняется хроматизм положения. Излучение, совмещенное в один пучок, направляется через афокальную телескопическую систему на объект исследования. Далее отраженное от объекта исследования или рассеянное назад излучение поступает в двухзеркальный телескоп, образованный зеркалом, выполненным в виде отрицательной менисковой линзы, на второй поверхности которой кольцеобразно нанесено зеркальное покрытие, и введенным дополнительным зеркалом, расположенным перед первой поверхностью указанной линзы. Проходя через двухзеркальный телескоп, излучение разделяется на два канала с длиной волны 1 и 2. Каждый канал содержит свой приемник излучения. На каждый приемник излучения поступает сигнал определенной длины волны.

Новым в заявляемом устройстве является:

- выполнение источника излучения в виде системы двух лазеров, работающих на двух разных длинах волн, и блока сведения световых каналов этих лазеров;

- введение дополнительной линзы в афокальную телескопическую систему и установка ее в световом канале одного из лазеров;

- введение дополнительного зеркала в приемное устройство и установка его перед первой поверхностью отрицательной менисковой линзы;

- выполнение разделяющего блока в виде зеркала с диафрагмой и расположение его и приемников излучения за второй поверхностью отрицательной менисковой линзы.

Заявляемая оптическая система дальномера поясняется чертежом (см. фиг.) Оптическая система дальномера содержит источник излучения 1, систему формирования излучения, выполненную в виде афокальной телескопической системы 2, и приемное устройство 3.

Источник излучения 1 выполнен в виде системы двух лазеров: 4, работающего на длине волны 1, и 5, работающего на длине волны 2, и блока сведения световых каналов лазеров 4 и 5, содержащего зеркало 6 и светоделитель 7.

Афокальная телескопическая система 2, выполненная по схеме Галилея, снабжена дополнительной линзой 8, установленной в световом канале лазера 5 перед зеркалом 6.

Приемное устройство 3 состоит из зеркала, выполненного в виде отрицательной менисковой линзы 9, на второй (выпуклой) поверхности которой кольцеобразно нанесено зеркальное покрытие 10, и дополнительного зеркала 11, установленного на оптической оси перед первой поверхностью отрицательной менисковой линзы 9. По сути, указанная линза 9, представляет собой кольцевое зеркало Манжена. Показатель преломления материала, из которого выполнено кольцевое зеркало Манжена (линза 9), радиусы кривизны первой и второй его

поверхностей и толщина обеспечивают совпадение центра кривизны первой поверхности с фокальной плоскостью самого кольцевого зеркала Манжена. Отрицательная менисковая линза 9 (кольцевое зеркало Манжена) и дополнительное зеркало 11 образуют двухзеркальный телескоп.

В состав приемного устройства входит разделяющий блок, выполненный в виде зеркала 12 с диафрагмой 13, которое установлено под углом на оптической оси за второй поверхностью отрицательной менисковой линзы 9, в точке, соответствующей фокальному пятну излучения с меньшей длиной волны. В состав приемного устройства также входят два приемника излучения 14 и 15, расположенные за второй поверхностью отрицательной менисковой линзы 9 по разные стороны от зеркала 12. При этом приемник излучения 14 расположен перед зеркалом 12, а приемник излучения 15 - за зеркалом 12. Предлагаемое устройство работает следующим образом.

Излучение лазера 5 с длиной волны 2, проходит через дополнительную линзу 8, отражается от зеркала 6 и светоделителя 7 (блока сведения световых каналов лазеров 4 и 5) и объединяется с излучением лазера 4 с длиной волны 1, прошедшего через светоделитель 7. Дополнительная линза 8 компенсирует хроматизм положения для длины волны 1 в световом канале лазера 5. Совмещенные пучки направляются в афокальную телескопическую систему 2 (систему формирования излучения). Сформированные на ее выходе пучки с заданным диаметром и углом расходимости направляются на объект исследования. Отраженное или рассеянное назад от объекта излучение принимается двухзеркальным телескопом, образованным зеркалом, выполненным в виде отрицательной менисковой линзы 9 (кольцевым зеркалом Манжена) и дополнительным зеркалом 11. Излучение попадает на первую поверхность отрицательной менисковой линзы 9, проходит через тело линзы 9, отражается от зеркального покрытия, нанесенного на второй поверхности линзы 9,

вторично проходит через тело линзы 9 и попадает на дополнительное зеркало 11. Далее излучение отражается от дополнительного зеркала 11 и направляется по оптической оси через центральную часть линзы 9, не имеющую отражающего покрытия, за ее вторую поверхность. Вследствие дисперсии материала линзы 9 вносится существенная разница в оптические пути излучений с длиной волны 1 и 2, т.е. фокальные пятна, соответствующие разным длинам волн, располагаются на оптической оси на разных расстояниях от второй поверхности отрицательной менисковой линзы 9. За второй поверхностью линзы 9 излучение с меньшей длиной волны проходит через диафрагму 13 зеркала 12 и попадает на приемник излучения 14. А излучение большей длины волны отражается от зеркала 12 и попадает на приемник излучения 15.

Приведенные выше сведения подтверждают возможность работы устройства в различных режимах - когда оба канала выполняют одну и ту же функцию: каждый канал работает как дальномер на своей длине волны или как оптическое устройство в составе лидара при мониторинге атмосферы, либо - когда каждый канал выполняет свою функцию: например, один канал работает как дальномер, а второй - создает подсветку объекта исследования. Оптическая система предлагаемого устройства обеспечивает независимость работы двух каналов на разных длинах волн. При прохождении всех оптических элементов системы пучки излучения с разными длинами волн не взаимодействуют друг с другом и не влияют друг на друга при их одновременной работе. Получение сигнала на каждой длине волны происходит на отдельном приемнике излучения.

Таким образом, заявляемая оптическая система позволяет существенно расширить функциональные возможности.

Кроме того, предлагаемое устройство за счет независимости работы каналов, работающих на разных длинах волн, позволяет повысить точность измерения параметров объекта, а также существенно уменьшить влияние метеорологических условий при эксплуатации устройства.

Заявляемая оптическая система дальномера может быть изготовлена промышленным способом с помощью известных средств и методов, что позволяет сделать вывод о соответствии данного технического решения условию патентоспособности «промышленная применимость».

Оптическая система дальномера, содержащая источник излучения, систему формирования излучения и приемное устройство, состоящее из зеркала, выполненного в виде отрицательной менисковой линзы, на второй поверхности которой кольцеобразно нанесено зеркальное покрытие, разделяющего блока и двух приемников излучения, расположенных по разные стороны от разделяющего блока, отличающаяся тем, что источник излучения выполнен в виде системы двух лазеров, работающих на разных длинах волн, и блока сведения световых каналов указанных лазеров, система формирования излучения, выполненная в виде афокальной телескопической системы, снабжена дополнительной линзой, установленной в световом канале одного из лазеров, приемное устройство снабжено дополнительным зеркалом, установленным на оптической оси перед первой поверхностью отрицательной менисковой линзы, а разделяющий блок, выполненный в виде зеркала с диафрагмой, и приемники излучения расположены за второй поверхностью отрицательной менисковой линзы.



 

Похожие патенты:

Изобретение относится к развертываемым крупногабаритным рефлекторам космических антенн
Наверх