Шпиндельный узел

 

Полезная модель относится к станкостроению и может быть использована в быстроходных шпиндельных узлах металлорежущих станков.

Технической задачей предлагаемой полезной модели является повышение производительности путем увеличения быстроходности шпинделя за счет интенсификации теплоотдачи в цилиндрической полости стакана, т.е. обеспечение равномерности теплообмена по всей поверхности охлаждаемых элементов системы.

Технический результат по повышению производительности станка достигается тем, что шпиндельный узел, содержащий корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, имеющим равномерно расположенные по окружности наклонные и параллельные оси шпинделя каналы, в которых выполнены совмещенные продольные винтообразные канавки, при этом каналы соединены с цилиндрической полостью закрепленного на заднем торце шпинделя стакана, имеющей поперечно винтообразные канавки. Стакан выполнен из биметалла, причем коэффициент теплопроводности материала, по толщине которого имеются поперечные винтообразные канавки, имеет более высокое значение.

Полезная модель относится к станкостроению и может быть использована в быстроходных шпиндельных узлах металлорежущих станков.

Известен шпиндельный узел (см. а.с. №1459895 МКИ В 23 Q 11/14, Бюл.7, 1999), содержащий корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, в котором выполнены равномерно расположенные по окружности наклонные и параллельные горизонтальной оси шпинделя каналы, соединенные с цилиндрической полостью в стакане, закрепленном на заднем торце шпинделя.

Недостатком является неполное охлаждение отдельных участков поверхности шпинделя за счет образования застойных зон в системе циркуляции теплоносителя.

Известен шпиндельный узел (см. патент РФ №2167744 МПК В 23 19/02, В 23 Q 11/14, 2001, Бюл. №15), содержащий корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, имеющим равномерно расположенные по окружности наклонные и параллельные оси шпинделя каналы, в которых выполнены совмещенные продольные винтообразные канавки, при этом каналы соединены с цилиндрической полостью закрепленного на заднем торце шпинделя стакана, имеющей поперечные винтообразные канавки.

Недостатком системы охлаждения является снижение интенсивности теплообмена в цилиндрической полости стакана из-за образования пленки конденсата теплоносителя в поперечных винтообразных канавках, что в конечном счете ограничивает увеличение быстроходности шпинделя и, соответственно, производительность станка.

Технической задачей предлагаемой полезной модели является повышение производительности путем увеличения быстроходности шпинделя за счет интенсификации теплоотдачи в цилиндрической полости стакана, т.е. обеспечение равномерности теплообмена по всей поверхности охлаждаемых элементов системы.

Технический результат по повышению производительности станка достигается тем, что шпиндельный узел, содержащий корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, имеющим равномерно расположенные по окружности наклонные и параллельные оси шпинделя каналы, в которых выполнены совмещенные продольные винтообразные канавки, при этом каналы соединены с цилиндрической полостью закрепленного на заднем торце

шпинделя стакана, имеющей поперечно винтообразные канавки. Стакан выполнен из биметалла, причем коэффициент теплопроводности материала, по толщине которого имеются поперечные винтообразные канавки, имеет более высокое значение.

На фиг.1 изображен продольный разрез элемента шпиндельного узла со схемой циркуляции теплоносителя; на фиг.2 - сечение А-А на фиг.1; на фиг.3 - сечение Б-Б на фиг.1; на фиг.4 - сечение В-В на фиг.1; на фиг.5 биметаллический стакан шпиндельного узла.

Шпиндельный узел содержит корпус (не показан), в котором установлен шпиндель 1 с возможностью вращения на подшипниковых опорах: задней 2 и передней 3. Шпиндель 1 снабжен герметическим устройством стабилизации температуры, которое состоит из выполненных равномерно по окружности наклонно к горизонтальной оси шпинделя 1 каналов 4 с продольными винтообразными канавками 5 и параллельно к горизонтальной оси каналов 6 с продольными винтообразными канавками 7, а также стаканом 8 с цилиндрической полостью 9 на поверхности которой выполнены поперечные винтообразные канавки 10.

Продольные винтообразные канавки 5 каналов 4 совмещены с продольными винтообразными канавками 7 каналов 6, что обеспечивает поддержание турбулизационного течения в пограничном слое по всему пути движения теплоносителя в системе охлаждения.

Стакан 8 изготовлен из биметалла, при этом расположение металлов осуществлено таким образом, что материал металла 11, в котором выполнены поперечные винтообразные канавки 10 имеет коэффициент теплопроводности материала основного металла 12.

Шпиндельный узел работает следующим образом.

Пары теплоносителя в полости 9 за счет скачкообразного увеличения площади поперечного сечения конденсируются. В результате при наличии пленки конденсата в 10-15 раз уменьшается коэффициент отдачи от теплоносителя к поверхности цилиндрической полости стакана 8 по сравнению с капельной конденсацией (см., например, стр.398, Нащокин В.В. Техническая термодинамика и теплопередача. - М.: Высшая школа. 1980 - 469 с., ил.), что резко снижает интенсивность теплообмена данного элемента шпиндельного узла и, соответственно, производительность станка.

Для поддержания капельной конденсации паров теплоносителя создаются искусственные термовибрации поверхности цилиндрической полости 9 стакана 8, путем выполнения его из биметалла с коэффициентом теплопроводности материала металла поверхности цилиндрической полости 9 большего значения, чем основного металла стакана 8.

В этом случае, при вращении шпинделя 1 теплоноситель под действием центробежных сил заполняет часть поперечных сечений, обращенных к наружной поверхности шпинделя 1, а наклонные каналы 4 заполняются теплоносителем практически полностью. Центробежные

силы, действующие при вращении шпинделя 1 на теплоноситель, заставляют более холодную часть теплоносителя двигаться по наклонным каналам 4 в направлении оси вращения к переднему торцу шпинделя 1, охлаждая его и вытесняя к заднему торцу нагретую часть теплоносителя и его пары, которые попадают в полость 9 стакана 8.

Движущийся теплоноситель и его пары, перемещаясь по продольным винтообразным канавкам 5 и 7, образуют завихрения у поверхности каналов, преобразуя ламинарное движение теплоносителя в пограничном слое в турбулентное. В результате турбулизации пограничного слоя его толщина уменьшается, что приводит к интенсификации теплообмена между теплоносителем и материалом шпинделем.

В цилиндрической полости 9 за счет скачкообразного увеличения площади поперечного сечения, занимаемого парами, последние конденсируются на поверхности поперечных винтообразных канавок 10 с выделением теплоты конденсации. В результате образуется температурный напор (разность температур теплоносителя и материала стакана 8), т.е. переход температур, который приводит к возникновению термовибрации поверхности цилиндрической полости 9. При этом чем больше значение коэффициента теплопроводности материала металла 11, в котором выполнены поперечные винтообразные канавки 10, тем больше количество тепла поступает к материалу основного металла 12, имеющего меньший коэффициент теплопроводности, что приводит к возрастанию температурного градиента и, как следствие, увеличивает величину термовибраций (см., например. Биметаллы. Дмитриев А.Н. и др. Пермь, 1991. - 416 с., ил.). Стоячие волны термовибрации разрушают образующуюся конденсатную пленку, поддерживая процесс капельной конденсации. Тогда поток каплеобразного мелкодисперсного теплоносителя, перемещаясь по поперечным винтообразным канавкам 10, завихряется, термодинамически расслаиваясь на периферийный и осевые потоки, дополнительно снижая температуру охлаждаемого теплоносителя, возвращаемого к передней опоре 3. В результате происходит круговая циркуляция теплоносителя с активным теплоотводом от опор и термостабилизацией шпиндельного узла по всей его внутренней поверхности.

Оригинальность технического решения по повышению производительности станка в условиях поддержания равномерности процесса охлаждения элементов шпиндельного узла заключается в том, что осуществлена интенсификация теплообмена на поверхности цилиндрической полости стакана путем устранения пленочной конденсации паров теплоносителя под воздействием термовибрации поперечных винтообразных канавок, расположенных в биметалле.

Шпиндельный узел, содержащий корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, имеющим равномерно расположенные по окружности наклонные и параллельные оси шпинделя каналы, в которых выполнены совмещенные продольные винтообразные канавки, при этом каналы соединены с цилиндрической полостью закрепленного на заднем торце шпинделя стакана, имеющей поперечные винтообразные канавки, отличающийся тем, что стакан выполнен из биметалла, причем коэффициент теплопроводности материала, по толщине которого выполнены поперечные винтообразные канавки, в 1,5 - 5,7 раза превышает значение коэффициента теплопроводности основного материала стакана шпинделя.



 

Похожие патенты:
Наверх