Электролитическая установка для получения газообразной смеси водорода и кислорода

 

Полезная модель относится к области электрохимии. Электролитическая установка содержит электролизер, представляющий собой корпус с размещенными внутри электродами в виде пластин, электрически связанными с источником питания. Электроды выполнены в виде набора дистантно расположенных пластин из нержавеющей стали с нанесенными на их поверхности вертикальными и горизонтальными запилами и с отверстиями для циркуляции электролита и отведения газов, которые в каждой пластине выполнены несоосно отверстиям в смежно расположенных пластинах. В качестве электролита использован неконцентрированный раствор воды с гидроксидом натрия. Емкость для электролита выполнена замкнутой и герметичной, выполнена с входом для заполнения ее полости электролитом с образованием над уровнем электролита незаполненной электролитом полости и сообщена с канал отвода смеси газа и воды из электролизера, а канал сбора газообразной смеси водорода и кислорода, в котором установлен водный затвор, сообщен с незаполненной электролитом полостью емкости для электролита. При этом в корпусе размещен по крайней мере один источник ультразвукового излучения в электролит на основе воды для ослабления молекулярных связей указанного электролита, и в корпусе так же электролизера размещен источник ультрафиолетового излучения для воздействия на электролит. А полость корпуса электролизера сообщена двумя каналами с емкостью для электролита, при этом выходы этих каналов расположены на противоположных стенках корпуса электролизера и напротив рядно расположенных пластин. 1 ил.

Полезная модель относится к области электрохимии и предназначено для получения газообразного водорода и газообразного кислорода. В частности рассматривается электролитическая установка, используемая для получения газообразного водорода и газообразного кислорода путем разложения водосодержащего раствора гидроксида натрия.

Из уровня техники известно, что электролизеры, аппараты для электролиза, состоят из одной или многих электролитических ячеек. Электролизер представляет собой сосуд (или систему сосудов), наполненный электролитом с размещенными в нем электродами - катодом и анодом, соединенными соответственно с отрицательным и положительным полюсами источника постоянного тока. В промышленности и лабораторной практике применяют электролизеры различных типов и конструкций (например, открытые и герметически закрытые, для периодической и непрерывной работы, с неподвижными и движущимися электродами, с различными системами разделения продуктов электролиза).

Известен электролизер (GB 1139614), содержащий корпус с электролитом, например водным раствором гидроксида натрия, а также рабочие электроды, участвующие в непосредственном процессе электролиза. В качестве электролита используются водные растворы неорганических веществ, например гидроксид натрия (NaOH), а в качестве электродов такие металлы, которые не разлагаются водным раствором, например платина.

К недостатку известного электролизера следует отнести пониженную эффективность производства водорода и кислорода, обусловленную необходимостью расхода большого количества электроэнергии для разложения воды на известных электродах. Известной причиной, препятствующей получению технического результата, который обеспечивается изобретением, является то обстоятельство, что между расходящимися к противоположным рабочим электродам положительными и отрицательными ионами возникает дополнительное напряжение, направленное противоположно к прикладываемому к рабочим электродам напряжению, в результате чего ток через электролизер возникает только при напряжении на рабочих электродах выше 1,48 вольта.

Известно ультразвуковое устройство для получения водорода из воды и любого водного раствора, содержащее емкость с водой или водным раствором, металлические электроды, размещенные в ней, и присоединенный к ним источник электроэнергии. Устройство дополнено капиллярами, размещенными вертикально в этой камере, с их верхними торцами выше уровня водного раствора, причем один из двух электродов размещен в жидкости под капиллярами, а второй электрод выполнен подвижным и сетчатым и размещен над ними, причем источник электроэнергии выполнен высоковольтным и регулируемым по амплитуде и частоте, причем устройство дополнено также двумя ультразвуковыми генераторами, один из которых размещен под нижним торцом этих капилляров и второй размещен выше их верхнего торца, причем устройство дополнено также резонансным электронным диссоциатором молекул активированного водного тумана, содержащим пару электродов, размещенных над поверхностью жидкости, с их плоскостями, перпендикулярно поверхности жидкости, и электрически присоединенных к дополнительному электронному генератору высоковольтных высокочастотных импульсов с регулируемой частотой и скважностью, в диапазоне частот, содержащим резонансные частоты возбуждения испаренных молекул жидкости и ее ионов (RU 81964, C25B 1/04, опубл. 10.04.2009).

Недостаток данного устройства заключается в том, что применение ультразвукового излучения требует затрат энергии. Это обусловлено тем, что воздействие проводится на не подготовленный раствор электролита. В результате этого часть энергии расходуется на перевод раствора в состояние, при котором возможен распад молекулярных связей, а друга часть энергии расходуется на проведение самого процесса распада связей. Это снижает эффективность устройства и не позволяет рассчитывать на высокий кпд.

Настоящая полезная модель направлена на достижение технического результата, заключающегося в повышении производительности и кпд установки для получения газообразного водорода и газообразного кислорода путем разложения водосодержащего раствора с гидроксидом натрия.

Указанный технический результат достигается тем, что в электролитической установке для получения газообразной смеси водорода и кислорода, содержащее электролизер, представляющий собой корпус с размещенными внутри электродами в виде пластин, электрически связанными с источником питания, и полость которого сообщена с емкостью, заполненной раствором электролита и с каналом отвода смеси газа и воды в канал сбора газообразной смеси водорода и кислорода, при этом в корпусе размещен по крайней мере один источник ультразвукового излучения в электролит для ослабления молекулярных связей указанного электролита, в качестве электролита использован неконцентрированный раствор воды с гидроксидом натрия, емкость для электролита выполнена замкнутой и герметичной, выполнена с входом для заполнения ее полости электролитом с образованием над уровнем электролита незаполненной электролитом полости и сообщена с канал отвода смеси газа и воды из электролизера, а канал сбора газообразной смеси водорода и кислорода, в котором установлен водный затвор, сообщен с незаполненной электролитом полостью емкости для электролита, при этом в корпусе электролизера размещен источник ультрафиолетового излучения для воздействия на электролит, электроды выполнены в виде набора рядно расположенных пластин из нержавеющей стали с нанесенными на их поверхности вертикальными и горизонтальными запилами и с отверстиями для циркуляции электролита и отведения газов, которые в каждой пластине выполнены несоосно отверстиям в смежно расположенных пластинах, а полость корпуса электролизера сообщена двумя каналами с емкостью для электролита, при этом выходы этих каналов расположены на противоположных стенках корпуса электролизера и напротив рядно расположенных пластин.

Указанные признаки являются существенными и взаимосвязаны с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.

Настоящая полезная модель поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата.

На фиг. 1 изображена блок-схема устройства для получения газообразного водорода и газообразного кислорода путем разложения водосодержащего раствора гидроксида натрия.

В рамках настоящей полезной модели рассматривается конструкция устройства для получения газообразного водорода и газообразного кислорода путем разложения водосодержащего раствора гидроксида натрия (в качестве электролита использован неконцентрированный раствор воды с гидроксидом натрия - это значительно снижает нагрев электролизера), то есть устройства для электролитического получения водородно-кислородной смеси - гремучего газа, который при горении используется для газопламенной технологии в ряде отраслей промышленности.

Современные электролизеры подразделяют на монополярные и биполярные по схеме подключения электродов к источнику питания (Якименко Л.М., Модылевская И.., Ткачек З.А. Электролиз воды. М.: Химия, 1970 г., 263 с). В монополярных электролизерах все электроды-аноды присоединены к одной общей токоведущей шине, а все электроды-катоды - к другой. Поэтому такой электролизер представляет собой, в сущности, одну электролизную ячейку, каждый из электродов которой состоит из нескольких элементов, включенных параллельно в цепь тока. В рамках настоящего изобретения рассматривается конструкция устройства с монополярным электролизером.

Известно, что электролизеры, предназначенные для общепромышленного применения, должны давать не менее 1,5 куб. м смеси в час. Монополярный электролизер потребляет около 1600 А на каждый кубометр водородно-кислородной смеси в час. Следовательно, монополярный электролизер, предназначенный для общепромышленного применения, потребляет не менее 2400 А. При таком токе электролизеру необходимы массивные токоподводы и тяжелый источник питания, что делает его неприемлемо громоздким для использования в составе электролизно-водного генератора (термин «электролизно-водный генератор» - по ГОСТ 2601-84, термин 160). В связи с этим в рамках настоящей полезно модели ставится задача создания установки с монополярным электролизером, потребляющим сравнительно небольшой ток при высоком кпд. В такой установке энергия тока утечки расходуется только на нагрев электролита, а не на образование водороднокислородной смеси.

На фиг. 1 следующими позициями обозначены следующие узлы заявленного устройства: датчик 1 уровня воды, заливной штуцер 2, датчик 3 давления, патрубки залива электролизера (каналы 4 подачи электролита в электролизер), патрубок выхода газа/воды из электролизера (канал 5 отвода смеси газа и воды), патрубок выхода газа из емкости (канал 6 сбора газообразной смеси водорода и кислорода), вентиль 7, водный затвор 8, клапан-пламегаситель 9, температурный датчик 10, электролизер 11, вода с добавлением гидроксида натрия (NaOH) (раствор 12 электролита), блок 13 широко импульсной модуляции для регулирования подаваемого напряжения по току и частоте, емкость 14 для электролита.

Устройство для электролитического получения газообразной смеси водорода и кислорода (фиг. 1) содержит электролизер 11, представляющий собой корпус с размещенными внутри электродами в виде пластин, электрически связанными с источником питания через блок 13 широко импульсной модуляции для регулирования подаваемого напряжения по току и частоте (регулирует силу тока и скорость разложения воды на H2 и O2, HHO.). Регулирование частоты по току влияет на атомары водорода и кислорода, атомарами являются слабые атомы H1 и O1, в свободной среде они на столько слабо заряжены, что практически мгновенно воссоединятся с друг другом образуя обратно H2O, но ультразвук колебаниями не дает воссоединиться обратно, так же этот эффект подзарядки атомов водорода и кислорода поддерживает ультрафиолетовое излучение.

Электроды выполнены в виде набора дистантно расположенных в ряд пластин из нержавеющей стали марки 03Х16Н15М3 толщиной 1 мм с нанесенными на их поверхности многочисленными вертикальными и горизонтальными запилами глубиной 0,25 мм и с отверстиями для циркуляции электролита и отведения газов, которые в каждой пластине выполнены несоосно отверстиям в смежно расположенных пластинах. Таких отверстий в каждой пластине должно быть не менее трех (выявлено путем проведения экспериментов как наиболее удачное решение). Эти отверстия используются для циркуляции электролита и отведения газов. Несоосные отверстия обеспечивают, задержку раствора электролита между электродами (пластинами), увеличение сопротивления раствора электролита между электродами (пластинами), что позволяет избежать нагрева раствора электролита. При этом ионы не могут пройти сквозь все электроды от первого до последнего в электролите напрямую. Ударяясь об электрод (пластину) ионы превращаются в протоны и заряжают на разряд электрод положительно или отрицательно, что обеспечивает динамическую смену полюсов на электродах (пластинах). Данное явление происходит за счет аккумулирования энергии в самом электролизере и за счет большого количества электродов (пластин). Эффект влияет на электроды для отрыва газов от электродов (пластин), уменьшает налет на электродах (пластинах) и создает ударную силу тока между электродами (пластинами).

В корпусе электролизера пластины, число которых определяется необходимой производительностью электролизера, соединены между собой электрически последовательно.

Полость корпуса электролизера сообщена с емкостью 14, заполненной раствором электролита на основе воды (неконцентрированный раствор воды с гидроксидом натрия выполнен с соотношении 2,5 грамма на 1 литр дистиллированной воды) и с каналом отвода смеси газа и воды в канал сбора газообразной смеси водорода и кислорода. Полость корпуса электролизера сообщена двумя каналами с емкостью для электролита, при этом выходы этих каналов расположены на противоположных стенках корпуса электролизера и напротив рядно расположенных пластин.

Емкость для электролита выполнена замкнутой и герметичной, выполнена с входом для заполнения ее полости электролитом с образованием над уровнем электролита незаполненной электролитом полости и сообщена с канал отвода смеси газа и воды из электролизера, а канал сбора газообразной смеси водорода и кислорода, в котором установлен водный затвор и клапан-пламегаситель 9, сообщен с незаполненной электролитом полостью емкости для электролита,

Применение в качестве электролита неконцентрированного раствора гидроксида натрия (NaOH) в соотношении 2,5 грамма на 1 литр дистиллированной воды значительно снижает нагрев электролизера. Также отсутствие концентрированного электролита и высоких температур продлевает срок гарантированной службы электролизера до десяти лет. Отсутствие нагрева электролизера является также отличительной чертой позволяющей работать установке в круглосуточном режиме.

В корпусе электролизера размещен по крайней мере один источник ультразвукового излучения в электролит на основе воды для ослабления молекулярных связей указанного электролита. Ультразвук влияет на колебание атомов воды, заставляя входить в резонанс, при этом связь атомов кислорода с молекулами водорода слабеет. Ультразвук вводит установку в резонанс, заставляя вибрировать, вибрация электродов(пластин) сбрасывает пузырьки газа с электродов (пластин).

Так же в этом корпусе размещен источник ультрафиолетового излучения для воздействия на электролит. Такой же источник ультрафиолетового излучения может быть размещен в емкости, этот источник используется для воздействия на электролит. Ультрафиолетовое излучение успокаивает молекулы воды в электролизере, делая воду мягче, тем самым подготавливает воду к более мягкому распаду с наименьшими затратами в последующем электроэнергии. При интенсивном облучении вода находится в полураспаде, при этом связь молекул кислорода с молекулами водорода слабеет.

Ультрафиолетом (УФ) называют невидимую глазом часть спектра электромагнитных волн, имеющих энергию большую, чем у видимого фиолетового света. УФ-излучение охватывает диапазон с длиной волны от 100 до 400 нм. Колебания с длиной волны от 100 до 200 нм называют жестким или вакуумным ультрафиолетом. Их энергии может хватать на разрушение органических молекул. Колебания с длиной волны от 200 до 400 нм генерируются в специальных ртутных или ксеноновых лампах и широко применяются для обеззараживания воды и воздуха от различных микроорганизмов. Обработка воды ультрафиолетовым излучением относится к числу безреагентных, физических методов водоподготовки. Различают два метода облучения ультрафиолетом - импульсное, с широким спектром волн, и постоянное, в выбранном диапазоне волн. Важнейшим качеством УФ-обработки воды является отсутствие изменения ее физических и химических характеристик даже при дозах, намного превышающих практически необходимые (статья «Обработка воды ультрафиолетом» из книги Рябчикова Б.Е. «Современные методы подготовки воды для промышленного и бытового использования», выложенная на сайте «МЕДИАНА ФИЛЬТР» компании НПК "Медиана-фильтр" в сети Интернет в режиме он-лайн доступа по адресу: http://www.mediana-filter.ru/water_filter_uf.html).

Жесткое УФ-излучение в области 100-200 нм вызывает образование озона из молекул растворенного в воде кислорода и непосредственно воздействует на молекулы органических соединений. Следует отметить, что эффективность УФ-обеззараживания воды может быть дополнительно повышена путем сочетания с другими методами обеззараживания и с физическими воздействиями. Так, одновременная обработка воды кавитацией или ультразвуком и ультрафиолетом, введение малых доз озона после УФ-обработки позволяют сократить необходимую дозу облучения.

Кавитация приводит к образованию микропузырьков воздуха, при «схлопывании» пузырьков возникают большие перепады давления, одновременно в этих пузырьках под действием УФ-излучения образуются активные радикалы, которые эффективно уничтожают микрофлору и окисляют органику в воде. При этом весь объем воды обрабатывается ультрафиолетом.

При применении УФ-излучения происходит ослабление молекулярных связей воды и их упорядочение в структуре электролита, что позволяет при попадании раствора электролита в поле ультразвукового излучения уже иметь ослабленные молекулярные связи, которые при слабом воздействии ультразвука распадаются. Это взаимосвязь УФ-излучения и ультразвукового излучения позволяет существенно сократить расход электроэнергии на питание пластин электродов. А выполнение этих пластин с запилами существенно увеличивает контактную площадь электродов. Так как электроды расположены рядно и в большом количестве, то в пространстве между двумя смежными пластинами образуется динамически процесс смены полюсов на электродах. При таком исполнении резко повышается кпд электролитической установки.

Функционирует устройство для электролитического получения газообразной смеси водорода и кислорода следующим образом.

Осуществляют заполнение емкости 14 через заливной штуцер 2 электролитом в виде смеси воды с гидроксидом натрия (NaOH) до заданного уровня, определяемого датчиком 1 уровня воды. Заполнение герметичной емкости осуществляют так, чтобы над уровнем электролита была сформировано воздушная полость. Это полость сообщается с каналом 6 сбора газообразной смеси водорода и кислорода, сообщенным с потребителем газовой смеси. По двум каналам 4 подачи электролита в электролизер электролит из емкости 14 для электролита подается в электролизер, при этом выходы этих каналов расположены на противоположных стенках корпуса электролизера и напротив рядно расположенных пластин. Таким образом, электролит подается в электролизер встречными потоками, что приводит к постоянному барботажу раствора в корпусе электролизера. При этом пластины электродов находятся в контакте с однородным перемешанным по структуре электролитом. При подаче питания на электроды и включении источников УФ-излучения и ультразвукового излучения происходит предварительная обработка воды в растворе электролита, обеспечивающая ослабление молекулярных связей. После этого происходит сам электролитический процесс, при котором выделяется водогазовая смесь, которая потоком поднимается по каналу 5 отвода смеси газа и воды и попадает в электролит, в котором газовая компонента поднимается вверх и направляется в канал 6 сбора газообразной смеси водорода и кислорода, а водная компонента остается в среде электролита.

Настоящая полезная модель промышленно применима и может быть изготовлена с использованием технологий и оборудования, применяемого при производстве электролизеров. Полезная модель позволяет повысить производительность установки и ее кпд. Установка достаточно проста, изготавливается с использованием традиционных конструкционных материалов и известных электролитов и может быть использована в широком аспекте потребителей газа. Испытания предложенного устройства подтвердили работоспособность электролизера по предложенной схеме и все изложенные выше преимущества такого исполнения. В частности, тепловыделение сократилось в несколько раз по сравнению с тепловыделением обычных электролизеров такой же производительности по водородно-кислородной смеси.

1. Электролитическая установка для получения газообразной смеси водорода и кислорода, содержащая электролизер, представляющий собой корпус с размещенными внутри электродами в виде пластин, электрически связанными с источником питания, и полость которого сообщена с емкостью, заполненной раствором электролита и с каналом отвода смеси газа и воды в канал сбора газообразной смеси водорода и кислорода, при этом в корпусе размещен по крайней мере один источник ультразвукового излучения в электролит для ослабления молекулярных связей указанного электролита, отличающаяся тем, что в качестве электролита использован неконцентрированный раствор воды с гидроксидом натрия, емкость для электролита выполнена замкнутой и герметичной, выполнена с входом для заполнения ее полости электролитом с образованием над уровнем электролита незаполненной электролитом полости и сообщена с канал отвода смеси газа и воды из электролизера, а канал сбора газообразной смеси водорода и кислорода, в котором установлен водный затвор, сообщен с незаполненной электролитом полостью емкости для электролита, при этом в корпусе электролизера размещен источник ультрафиолетового излучения для воздействия на электролит, электроды выполнены в виде набора рядно расположенных пластин из нержавеющей стали с нанесенными на их поверхности вертикальными и горизонтальными запилами и с отверстиями для циркуляции электролита и отведения газов, которые в каждой пластине выполнены несоосно отверстиям в смежно расположенных пластинах, а полость корпуса электролизера сообщена двумя каналами с емкостью для электролита, при этом выходы этих каналов расположены на противоположных стенках корпуса электролизера и напротив рядно расположенных пластин.

2. Устройство по п.1, отличающееся тем, что пластины выполнены из нержавеющей стали марки 03Х16Н15МЗ толщиной 1 мм.

3. Устройство по п.1, отличающееся тем, что запилы выполнены глубиной 0,25 мм.

4. Устройство по п.1, отличающееся тем, что в каждой пластине выполнено по три отверстия.

5. Устройство по п.1, отличающееся тем, что в емкости размещен дополнительный источник ультрафиолетового излучения для воздействия на электролит.

6. Устройство по п.1, отличающееся тем, что неконцентрированный раствор воды с гидроксидом натрия выполнен с соотношении 2,5 грамма на 1 литр дистиллированной воды.

7. Устройство по п.1, отличающееся тем, что электроды связаны с источником питания через блок широко импульсной модуляции для регулирования подаваемого напряжения по току и частоте.



 

Похожие патенты:

Технический результат интенсификация процесса перемешивания солевого раствора и улучшение массобмена раствора электролита солевого раствора

Тигельная печь предназначена для индукционной плавки чугуна, титана, алюминия, меди и других материалов. Индукционная плавильная печь содержит индуктор, выполненный из медной тонкостенной трубки в виде многовитковой спиральной катушки с выводами для подключения к источнику питания.

Полезная модель относится к области медицинской техники, а именно к электрохирургическим инструментам для коагуляции и может быть использована при проведении холецистэктомии из минидоступа для коагуляции ложа желчного пузыря.

Полезная модель относится к цветной металлургии, а именно к средствам сбора отходящих газов алюминиевого электролизера в пусковой период

Полезная модель относится к теплотехнике, точнее к устройствам нагрева воды и прочих жидкостей и может быть использовано в системах теплоснабжения как в промышленности, так и в быту

Изобретение относится к электротехнике, в частности, к электрооборудованию железнодорожных транспортных средств, а именно, к силовым полупроводниковым преобразователям для тепловоза с питанием трехфазным переменным током от синхронного дизель-генератора с системой вертикального воздушного охлаждения
Наверх