Радиационно-стойкая библиотека элементов на комплементарных металл-окисел-полупроводник транзисторах

 

Полезная модель относится к области к области микроэлектроники. Техническим результатом полезной модели является создание радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник транзисторах с меньшей площадью элементов на кристалле и повышенным быстродействием, содержащей подложку p-типа и «карман» n-типа, активные области МОП транзисторов n- и p-типов, контакты p+ и n+ к шине нулевого потенциала и питания соответственно, отличающейся тем, что дополнительно содержит расширенную n+ охрану, расположенную вдоль внешней границы «кармана» и заполняющую собой всю свободную площадь «кармана», а также кольцевую p+ охрану, расположенную вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет собой всю свободную площадь подложки. 1 н.п. ф-лы, 5 ил.

Полезная модель относится к области микроэлектроники, а именно к радиационно-стойким библиотекам элементов на комплементарных металл-окисел-полупроводник (КМОП) транзисторах, и может быть использовано при проектировании радиационно-стойких КМОП СБИС (сверхбольших интегральных схем) на объемном кремнии, в частности СБИС типа «система-на-кристалле» для авионики, аэрокосмических и других применений.

Известны [патент США N 3440503, патент США N 4318750] конструктивно-топологические решения КМОП элементов библиотеки (Фиг. 1), занимающих минимальную площадь на кристалле и использующих локальные p+ области 3 в подложке p-типа и n+ области 2 в «кармане» 1 n-типа соответственно для контактов к шине нулевого потенциала (земли) и питания.

На Фиг. 1 также показаны области 4 и 5 затворов n- и p-канальных транзисторов соответственно, сток-истоковые области 6 и 7 n- и p-канальных транзисторов соответственно, 8 - топологическая граница элемента, по которой стыкуются соседние элементы.

Недостатком таких решений является низкая стойкость ко всем радиационным факторам. Это связано со значительными утечками в области n-канальных транзисторов: между n+ областями стоков/истоков соседних транзисторов и между n-карманом и n+ областями истоков/стоков этих транзисторов. Кроме того такая конструкция элементов обладает низкой стойкостью к эффекту «защелкивания» и сбоям в элементах при воздействия тяжелых частиц.

Наиболее близкими к заявленному конструктивно-топологическому решению КМОП элементов библиотеки являются элементы, выполненные согласно патенту США N 5406513 (Фиг. 2 и Фиг. 3, на которых изображены два разных по сложности элемента библиотеки, реализующие данный конструктивно-топологической принцип при одинаковых проектных нормах), использующие охранные кольца p+ типа (область 3) и n+ типа (область 2) вокруг транзисторов n- и p-типов и подключенные соответственно к шине нулевого потенциала (земли) и питания. Данные элементы выбраны в качестве прототипов заявленной полезной модели.

На Фиг. 2 и 3 также показаны области 4 и 5 затворов n- и p-канальных транзисторов соответственно, сток-истоковые области 6 и 7 n- и p-канальных транзисторов соответственно, 8 - топологическая граница элемента, по которой стыкуются соседние элементы.

Конструктивно-топологическое решение КМОП элементов библиотеки прототипа обладает высокой стойкостью к радиационным факторам. Однако, элементы такой библиотеки занимают большую площадь на кристалле, что приводит к существенному снижению степени интеграции СБИС, а также понижению быстродействия.

Задачей заявленной полезной модели является создание радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник транзисторах с меньшей площадью элементов на кристалле и повышенным быстродействием.

Поставленная задача решена путем создания радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник транзисторах, содержащей подложку p-типа и «карман» n-типа, активные области МОП транзисторов n- и p-типов, контакты p+ и n+ к шине нулевого потенциала и питания соответственно, отличающейся тем, что дополнительно содержит расширенную n+ охрану, расположенную вдоль внешней границы «кармана» и заполняющую собой всю свободную площадь «кармана», а также кольцевую p+ охрану, расположенную вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет собой всю свободную площадь подложки.

Краткое описание чертежей.

Фиг. 1. Схема КМОП элементов библиотеки, выполненная согласно патенту США N 3440503 и патенту США N 4318750.

Фиг. 2. Схема КМОП элементов библиотеки, выполненная согласно патенту США N 5406513.

Фиг. 3. Схема КМОП элементов библиотеки, выполненная согласно патенту США N 5406513.

Фиг. 4. Схема варианта КМОП элементов библиотеки, выполненная согласно полезной модели.

Фиг. 5. Схема варианта КМОП элементов библиотеки, выполненная согласно полезной модели.

В заявленном конструктивно-топологическом решении элементов КМОП библиотеки (Фиг. 4, 5) отсутствует кольцевая n+ охрана во внутренней области элемента вдоль границы карман-подложка и используется расширенная n+ охрана 2 вдоль внешней границы «кармана» 1, которая заполняет всю свободную площадь «кармана» 1, а также присутствует кольцевая p+ охрана (область 3) вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет всю свободную площадь подложки.

На Фиг. 4 и 5 также показаны области 4 и 5 затворов n- и p-канальных транзисторов соответственно, сток-истоковые области 6 и 7 n- и p-канальных транзисторов соответственно, 8 - топологическая граница элемента, по которой стыкуются соседние элементы. Все области p+ охраны 3 подключаются к шине нулевого потенциала, а области n+ охраны - к шине питания, благодаря чему обеспечивается привязка подложки и «кармана» 1.

Сравнение различных элементов, выполненных по одинаковым правилам проектирования, показало, что площадь на кристалле у элементов с предлагаемыми конструктивно-топологическими решениями приблизительно в среднем на 26% меньше, чем у прототипа при несколько большем быстродействии. По сравнению с нестойкими элементами площадь больше всего лишь на 10%. Испытания микросхем, разработанных с помощью предложенной библиотеки элементов показали высокую дозовую стойкость и отсутствие тиристорного эффекта при воздействии тяжелых заряженных частиц во всем доступном диапазоне линейных потерь энергии.

Хотя описанный выше вариант выполнения полезной модели был изложен с целью иллюстрации настоящей полезной модели, специалистам ясно, что возможны разные модификации, добавления и замены, не выходящие из объема и смысла настоящей полезной модели, раскрытого в прилагаемой формуле полезной модели.

Радиационно-стойкая библиотека элементов на комплементарных металл-окисел-полупроводник транзисторах, содержащая подложку p-типа и "карман" n-типа, активные области МОП транзисторов n- и p-типов, контакты p+ и n+ к шине нулевого потенциала и питания соответственно, отличающаяся тем, что дополнительно содержит расширенную n+ охрану, расположенную вдоль внешней границы "кармана" и заполняющую собой всю свободную площадь "кармана", а также кольцевую p+ охрану, расположенную вокруг каждой из групп транзисторов n-типа с областями стока/истока транзисторов с разным потенциалом, которая заполняет собой всю свободную площадь подложки.



 

Похожие патенты:

Полезная модель относится к области радиотехники и электроники. В частности, к интегральным микросхемам на основе технологии КМОП, и может быть использована в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения.
Наверх