Стенд для испытания сопла

 

Полезная модель относится к технике, связанной с испытанием сопл, и может быть использована при проведении модельных испытаний для определения угла выхода потока и коэффициента скорости сопл, преимущественно плоских, которые широко применяют для двигателей в судостроении, авиации, космонавтике, в мобильных электростанциях и других областях техники. Стенд для испытания сопла, содержащий подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой, кроме того ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат, достигаемый при решении поставленной задачи, выражается в повышении точности измерения и эффективности испытаний сопла благодаря возможности измерения реактивной силы по трем взаимно перпендикулярным осям, расширение области применения за счет возможности установки сопла в восьми различных положениях в пространстве (четыре взаимно перпендикулярных в вертикальной плоскости и четыре - в горизонтальной), а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.

Полезная модель относится к технике, связанной с испытанием сопл, и может быть использована при проведении модельных испытаний для определения угла выхода потока и коэффициента скорости сопл, преимущественно плоских, которые широко применяют для двигателей в судостроении, авиации, космонавтике, в мобильных электростанциях и других областях техники.

Известна конструкция стенда для определения вектора тяги двигателя с кососрезанным соплом, содержащая держатель испытываемого двигателя в виде рамы-обоймы, которая выполнена с возможностью опирания на измерительные средства, определяющие параметры в двух направлениях, часть из которых располагается на основании с возможностью небольших перемещений в горизонтальной плоскости (см. патент РФ 2274764, МПК F02К 9/96, дата публикации 20.04.2006).

Недостатком конструкции этого стенда является ограниченная область применения, недостаточная эффективность измерений, которые проводят в двух направлениях, а также низкая точность из-за возможности наличия систематической погрешности в ходе испытаний.

Известна конструкция стенда для испытания прямоточных воздушно-реактивных двигателей, содержащая трубопровод, присоединенный к емкости для сборки рабочего тела, соединенной с испытываемым двигателем, который выполнен с возможностью опирания на силоизмерительные средства (см. патент РФ 2261425, МПК G01М 15/00, дата публикации 27.09.2005).

Недостатком конструкции этого стенда является ограниченная область применения, недостаточная эффективность измерений, которые проводят в одном направлении, а также низкая точность из-за возможности наличия систематической погрешности в ходе испытаний.

В качестве ближайшего аналога принята установка для исследования единичных малых сопел, содержащая трубопровод, присоединенный к емкости для сборки рабочего тела, которая выполнена с возможностью установки испытываемого сопла в двух плоскостях с помощью фланцевого соединения и возможностью опирания на силоизмерительные средства (см. Наталевич А.С., «Воздушные микротурбины», 2 изд., перераб. и доп. - М., Машиностроение, 1979, стр.92-93., 192 с., ил.).

Недостатком ближайшего аналога является недостаточная эффективность измерений, которые проводят в одном направлении, повышенная трудоемкость эксплуатации из-за необходимости использования весов и игольчатой подставки, а также низкая точность из-за отсутствия учета правильности (соосности) установки испытываемого сопла на емкости для сборки рабочего тела и возможности наличия систематической погрешности в ходе испытаний.

Задачей, на решение которой направлено предлагаемое техническое решение, является разработка конструкции стенда, позволяющего произвести необходимые измерения простым способом и с высокой точностью и эффективностью.

Технический результат, достигаемый при решении поставленной задачи, выражается в повышении точности измерения и эффективности испытаний сопла благодаря возможности измерения реактивной силы по трем взаимно перпендикулярным осям, расширение области применения за счет возможности установки сопла в восьми различных положениях в пространстве (четыре взаимно перпендикулярных в вертикальной плоскости и четыре - в горизонтальной), а также снижении трудоемкости изготовления и эксплуатации устройства.

Указанная задача решается тем, что в стенде для испытания сопла, содержащем подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, подводящий трубопровод снабжен упругой вставкой, кроме того ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов свидетельствует о его соответствии критерию «новизна».

На фиг.1 изображен вид стенда сбоку с установленным испытываемым соплом.

На фиг.2 изображен вид стенда справа с установленным испытываемым соплом.

На фиг.3 изображен продольный разрез испытываемого сопла.

На фиг.4 изображена схема разложения реактивной силы.

На чертежах показаны подводящий трубопровод 1 с упругой вставкой 2 в виде сильфона, закрепленный в пространстве с помощью опоры 3, ресивер 4, испытываемое сопло 5, съемные фланцевые накладки 6, измерительные средства 7 в виде однокомпонентных датчиков силы с измерительными штангами 8, заглушка 9.

Упругая вставка 2 трубопровода 1 обеспечивает подвод рабочего тела и подвижность ресивера 4 в трех взаимно перпендикулярных направлениях.

Ресивер 4 выполнен цилиндрической формы для снижения трудоемкости изготовления, снижения материалоемкости и более равномерного распределения сжатого воздуха при испытаниях.

Испытываемое сопло 5 выполнено преимущественно плоским.

Съемные фланцевые накладки 6 выполнены симметричными, причем внутренний край каждой из съемных фланцевых накладок 6 отогнут под прямым углом для обеспечения возможности крепления между ними испытываемого сопла 5. Расстояние между параллельными внутренними краями закрепленных съемных фланцевых накладок 6 соответствует размеру испытываемого сопла 5.

Один конец каждой из измерительных штанг 8 фиксируется на ресивере 4, а другой конец снабжен завальцованым шариком, обеспечивающим возможность передвижения по измерительным средствам 7, и как следствие, возможность передвижения ресивера 4 по трем взаимно перпендикулярным направлениям. Перемещения измерительных штанг 8 по измерительным средствам 7 незначительны и не оказывают существенное влияние при измерении реактивной силы.

Способ осуществляют следующим образом.

Предварительно устанавливают в пространстве подводящий трубопровод 1 с помощью опоры 3, который затем соединяют с ресивером 4, установленным с возможностью его удержания с помощью измерительных штанг 8, которые также обеспечивают возможность передвижения ресивера 4 по измерительным средствам 7. Испытываемое сопло 5 присоединяют к торцу ресивера 4 с помощью съемных фланцевых накладок 6 в начальном положении, показанном на фиг.1. Горловину отверстия, расположенного на боковой поверхности ресивера 4, закрывают с помощью заглушки 9.

К стенду от компрессорной установки (на чертежах не показана) подводят сжатый воздух, который проходит через трубопровод 1 с упругой вставкой 2 и корпус ресивера 4. В испытываемом сопле 5 сжатый воздух расширяется до атмосферного давления. Реактивная сила, возникающая при истечении воздуха через испытываемое сопло 5, через измерительные штанги 8 передается на измерительные средства 7, при этом ресивер 4 совершает микроперемещения, необходимые для работы измерительных средств 7. После проведения необходимых измерений подвод сжатого воздуха прекращают.

Далее меняют положение испытываемого сопла 5 путем поворота на 90 градусов относительно начального положения и заново закрепляют с помощью съемных фланцевых накладок 6 на торце ресивера 4. Затем возобновляют подачу сжатого воздуха и снимают показания измерительных средств 7 при новом положении испытываемого сопла 5. Аналогично проводят необходимые измерения при положениях испытываемого сопла 5, полученных путем поворота относительно начального положения на 180 и 270 градусов.

На втором этапе испытаний испытываемое сопло 5 вертикально закрепляют на боковой поверхности ресивера 4 с помощью съемных фланцевых накладок 6. При этом горловину отверстия, расположенного с торца ресивера 4, закрывают с помощью заглушки 9.

Начальное положение испытываемого сопла 5 в горизонтальной плоскости аналогично положению испытываемого сопла 5 в вертикальной плоскости, изображенному на фиг.1. Затем подают сжатый воздух и снимают показания измерительных средств 7. Аналогично проводят необходимые измерения при положениях испытываемого сопла 5, полученных путем поворота относительно начального положения на 90, 180 и 270 градусов соответственно.

На заключительном этапе проводят анализ полученных данных и определение расчетных характеристик.

Реактивную силу определяют по формуле:

, где

- реактивная сила, Н;

, , - проекции реактивной силы, Н, соответственно, на оси X, Y, Z.

Угол выхода потока определяют по формуле:

, где

- угол выхода потока, град.

Коэффициент скорости сопла определяют по формуле:

, где

C1 - выходная скорость потока, м/с, определяемая по формуле:

,где

G - расход потока, кг/с;

G1теор - теоретическая выходная скорость, определяемая по формуле:

, где

k - адиабатный коэффициент воздуха;

R - газовая постоянная для воздуха, Дж/(кг·К);

Т - температура перед соплом, К;

P 1 - давление перед соплом, Па;

P2 - давление за соплом, Па.

Таким образом, конструкция заявляемого стенда повышает точность и эффективность измерений благодаря возможности закрепления сопла в восьми различных положениях, при которых проводятся испытания, а также исключению систематической погрешности и вследствие этого учета неправильности закрепления сопла.

Стенд для испытания сопла, содержащий подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, отличающийся тем, что подводящий трубопровод снабжен упругой вставкой, кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое - на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания.



 

Наверх