Устройство для очистки воды от микробных органических и химических загрязнений

 

Устройство предназначено для отчистки воды от микробиологических, органических и химических загрязнений. Техническим результатом предложения является создание устройства простого в изготовлении, не включающего дорогостоящие механические и электронные устройства и позволяющего эффективно воздействовать на бактериальные, органические и химические загрязнения воды и ее растворов (том числе для утилизации токсикантов). Технический результат достигается тем, что устройство для отчистки воды от микробиологических, органических и химических загрязнений содержит рабочую камеру, систему прокачки жидкости, систему подачи газа к устройству и многоэлектродное разрядное устройство с инжекцией газа в межэлектродное пространство, при этом рабочая камера выполнена в виде цилиндрической трубы для прокачки жидкости, электроды разрядного устройства установлены на внутренней поверхности трубы по кольцу с одинаковым зазором между ними, а система подачи высоковольтного напряжения и газа к разряднику расположена вне рабочей камеры.

Полезная модель относится к области экологии, в частности, к установкам по плазмохимическим методам обработки жидкости (воды, ее растворов и др.) с целью воздействия на ее микробиологическую и химическую составляющую (утилизация токсикантов).

Использования электрического разряда в воде для ее отчистки от микробных, органических и химических загрязнителей является перспективным направлением в области электрофизических экологических технологий (электронный пучок, озонирование, электрический разряд и др.). Отличительной особенностью этих методов является то, что они не требуют применения вредных и опасных хлор и фтор содержащих веществ. Обладая высокой эффективностью, электрический разряд в воде является наиболее простым и дешевым.

Известно, что воздействие импульсного высоковольтного разряда на воду и ее растворы обусловлено следующими факторами.

1. Локальное воздействие: сосредоточено в области плазменных каналов лидеров и стримеров и обусловлено воздействием гидратированных электронов, ионов и активных радикалов (зона действия 10 мм).

2. Нелокальное воздействие: волновые процессы - механические (акустические, ударные волны) и электромагнитные (УФ излучение), которое оказывает, как прямое воздействие, так и фотолитическое - генерация активных радикалов ОН и др. (зона действия 30-40 мм).

Отметим, что все указанные выше факторы осуществляют синергетическое воздействие на жидкость.

Следует отметить, что вода, содержащая химические загрязнения, как правило, обладает повышенной электрической проводимостью, что затрудняет, формирование импульсного высоковольтного разряда со сравнительно малой энергией импульса (0,10 Дж). Одним из способов, позволяющих обойти эти трудности, является ввод пузырьков газа в межэлектродное пространство (Нагульный К.А., Рой Н.А. Электрический разряд в воде. М. Наука, 1971).

Известно устройство, использующее многоэлектродный разрядник с прокачкой негорючего газа (воздух, азот, аргон и др). через межэлектродное пространство, с помощью которого реализуется высоковольтный импульсно периодический разряд в жидкости (воде и ее растворах) с целью воздействия на ее микробиологическую, органическую и химические составляющие (US 6558638 В2, 07.02.2002).

Помещенное в жидкость устройство, конструктивно представляет собой следующее: на внешней поверхности диэлектрической цилиндрической трубки, охватывая ее, располагаются "n" цилиндрических кольцевых электродов (нержавейка, медь, титан и др.) с одинаковым зазором между ними. Торцевая часть электродов является рабочей, внешняя цилиндрическая поверхность электродов покрыта изолятором. В стенках диэлектрической трубки в межэлектродном пространстве имеются несколько небольших 1 мм отверстий, через которые из полости трубки в жидкость поступают пузыри газа. Высоковольтное напряжение подается к двум крайним электродам: к одному непосредственно, а ко второму с помощью обратного токопровода, проходящему через полость трубки. Формирующийся в газовых пузырях разряд является источником мощного ультрафиолетового излучения и активных частиц (O3, Н2O2. ОН, О и др.).

Генерируемые в процессе разряда сильные акустические волны, а так же ударные волны (УВ), порождаемые в результате схлопывания пузырей являются дополнительным фактором воздействия на микробную, органическую и химическую составляющую жидкости.

Недостатками известного устройства являются:

1. линейная геометрия разрядного устройства исключает возможность фокусировки УФ излучения и акустических волн, генерируемых разрядом;

2. сложности и неудобства связанные с размещением в воде разрядника и коммуникационных систем для подачи высоковольтного напряжения и газа к разряднику; при эксплуатации разрядника в потоке разрядная система создает дополнительное сопротивление потоку жидкости;

3. при вертикальном расположении разрядного устройства в потоке жидкости из-за гидростатического давления происходит неравномерное поступление газа через отверстия расположенные вдоль разрядного устройства, что может влиять на стабильность и однородность разрядных каналов;

4. достаточная сложность конструкции в целом.

Задачей предлагаемой полезной модели является расширение арсенала технических средств очистки воды за счет фокусировки УФ излучения и акустических волн.

Техническим результатом предложения является создание устройства простого в изготовлении, не включающего дорогостоящие механические и электронные устройства и позволяющего эффективно воздействовать на бактериальные, органические и химические загрязнения воды и ее растворов (том числе для утилизации токсикантов).

Технический результат достигается тем, что устройство для отчистки воды от микробиологических органических и химических загрязнений содержит рабочую камеру, систему прокачки жидкости, систему подачи газа к устройству и многоэлектродное разрядное устройство с инжекцией газа в межэлектродное пространство, при этом рабочая камера выполнена в виде цилиндрической трубы для прокачки жидкости, электроды разрядного устройства установлены на внутренней поверхности трубы по кольцу с одинаковым зазором между ними, а система подачи высоковольтного напряжения и газа к разряднику расположена вне рабочей камеры.

На фиг.1 и фиг.2 представлено сечение диэлектрической трубы для прокачки жидкости.

На фиг.3 и фиг.4 - эквивалентные электрические схемы устройства.

На фиг.5 - проекции участка кольцевого разрядника.

На фиг.6 представлена схема устройства обработки воды.

Предлагаемая схематическая модель представлена на фиг.1, где показано сечение диэлектрической трубы 1, через которую прокачивается обрабатываемая вода и разрядная система, смонтированная на внутренней поверхности трубы. Электроды 2 в количестве "N", в данном случае, N=6, располагаются по кольцу на внутренней поверхности диэлектрической трубы 1 с одинаковым зазором между ними. Поверхность электродов, обращенная к центру трубы, покрыта электроизоляционным материалом 5, между "рабочими" поверхностями электродов 6 в диэлектрической трубке имеются отверстия 3 диаметром d1 мм, через которые газ поступает в полость 4 и затем в межэлектродное пространство.

Высоковольтное напряжение подается к двум противоположно расположенным по диаметру электродам. В результате этого в межэлектродных промежутках реализуется электрический пробой и формируются плазменные каналы, которые являются источниками активных частиц (гидратированные электроны, Н2O 2, ОН, О и др.), мощного УФ излучения и гидродинамических возмущений (акустические и ударные волны).

Эквивалентная электрическая схема приведена на фиг.3.

Вода является проводящим диэлектриком. Эквивалентные сопротивления, указанные на фиг.3 (R1-R6) - это сопротивления воды между соответствующими электродами и землей. При указанной схеме подключения высоковольтного (ВВ) напряжения разрядные ток протекает параллельно по двум симметричным участкам цепи (разрядные промежутки 3-1 и 4-6).

Расположение разрядных каналов симметрично по кольцу обеспечивает фокусировку УФ излучения и гидродинамических возмущений, что приводит к повышению эффективности воздействия разряда на воды. Эффективному формированию разряда способствует наличие в межэлектродных промежутках границы двух сред (вода-газ). Высокое значение диэлектрической проницаемости воды =81 приводит к усилению электрического поля в газе на границе жидкость-газ, что существенно снижает порог пробоя. Усиление электрического поля, отмеченная выше и наличие эквивалентных сопротивлений обеспечивают развитие скользящего кольцевого разряда вдоль внутренней поверхности трубы, по которой прокачивается вода.

На фиг.2 приведена другая схема подключения ВВ напряжения, которая обеспечивает протекание тока последовательно через все разрядные промежутки. Соответствующая эквивалентная схема приведена на фиг.4.

На фиг.5 представлены две проекции участка кольцевого разрядника. Нижняя фигура представляет собой развертку участка внутренней поверхности трубы 1, где изображены электроды 2, отверстия 3 для ввода газа, полость 4 для накопления газа, слой диэлектрического материала 5 и "рабочие" поверхности электрода 6.

Таким образом, разрядная система смонтированная на внутренней поверхности трубы не препятствует потоку жидкости, коммуникации обеспечивающие снабжением газа и подводящие высоковольтные напряжения к разряднику целиком располагаются на внешней поверхности трубы.

Для питания разряда использовался импульно-периодический генератор ВВ импульсов со следующими параметрами: напряжение UК20 кВ, частота следования импульсов f<100 Гц, энергия накопительного конденсатора W2 Дж, (С=10-8 Ф). Это обеспечивало ток I300 А, при длительности импульса тока =3-5 мкс и средней мощности N200 B.

На фиг.6 представлена схема установки по обработке воды, в которой используется 5 кольцевых разрядника, которые расположены вдоль трубы, через которую прокачивается обрабатываемая вода или ее растворы. Установка содержит диэлектрическую трубу 1, прокладку 7, патрубок 8, заглушку 9, резиновую герметизирующую накладку 10, иглу 11 для подачи воздуха, систему 12, окно 13, пробку 14, хомут 15.

Каждый кольцевой источник подключен к отдельному выходному каналу 5ти канального генератора ВВ импульсов параметры каждого канала равны описанному выше. Это обеспечивает среднюю мощность установки N=103 B.

Порядок работы следующий/Через иглу 11 подается газ, через патрубки 8 реализуется прокачка жидкости, после этого к разрядникам подается ВВ напряжение. Скорости подачи газа и прокачки жидкости - регулируются. Газы, прошедшие через обрабатываемую жидкость подаются в барбатер.

Промышленное применение предлагаемого устройства состоит в очистке воды от микробиологических, органических и химических загрязнений воды (природные водоемы, в том числе и для индивидуального пользования различные промышленные предприятия и др.).

Устройство для отчистки воды от микробиологических органических и химических загрязнений, характеризующееся тем, что содержит рабочую камеру, систему прокачки жидкости, систему подачи газа к устройству и многоэлектродное разрядное устройство с инжекцией газа в межэлектродное пространство, при этом рабочая камера выполнена в виде диалектрической цилиндрической трубы для прокачки жидкости, электроды разрядного устройства установлены на внутренней поверхности трубы по кольцу с одинаковым зазором между ними, причем поверхность электродов покрыта электроизоляционным материалом, между «рабочими» поверхностями электродов имеются отверстия для поступления газа в полость и в межтрубное пространство, а система подачи высоковольтного напряжения и газа к разряднику расположена вне рабочей камеры.



 

Похожие патенты:

Технический результат увеличение скорости нарастания напряжения на разрядном промежутке разрядного устройства
Наверх